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Refreshments will be served in Room 224.
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8:15 — 8:45
8:45 — 8:50

8:50 - 9:00

9:00 - 9:40

9:40 - 10:20

10:20 - 10:40

10:40 — 11:40

11:40 - 1:30
1:30 - 2:10

2:10 - 2:50

2:50 ~ 3:10
3:10 ~ 3:50

3:50 — 4:30

4:30 - 4:50

4:50 - 5:30

Friday, January 3

Refreshments

R.E. KAPLAN, Vice-Provost, USC
Welcome

G.-C. ROTA, MIT

Introductory Remarks

H.S. WILF, University of Pennsylvania

Ascending subsequences of permutations and Young tableaux
B. HARRIS, University of Wisconsin, Madison

The early history of the theory of random mappings

Break

V.F. KOLCHIN, Steklov Mathematical Institute, Moscow
Cycles in random graphs and hypergraphs

Lunch

D.J. ALDOUS, University of California, Berkeley
Brownian bridge asymptotics for random mappings
A.M. ODLYZKO, AT&T Bell Laboratories

Search for the maximum of a random walk

Break

B. BOLLOBAS, University of Cambridge, England

The height of a random partial order: concentration of measure
P. DIACONIS, Harvard University

Comparison techniques for card shuffling

Break

P. ERDOS
Recent problems in probabilistic number theory and combinatorics




Saturday, January 4

8:15~9:00 Refreshments

9:00 - 9:20 J.M. STEELE, University of Pennsylvania
Long common subsequence problems
9:20 - 9:40 L. HOLST, Royal Institute of Technology, Stockholm
On menage problems
9:40 - 10:00 P.J. JOYCE, University of Idaho
Poisson limit laws for dependent random permutations
10:00 - 10:20 V. KHOKHLOV, Steklov Mathematical Institute, Moscow
On the structure of a non-uniformly distributed random graph

10:20 - 10:40 Break

10:40 — 11:20 J. SPENCER, New York University
The Poisson paradigm and random graphs

11:20 - 12:00 L. TAKACS, Case Western Reserve University
On the heights and widths of random rooted trees

12:00 — 1:30 Lunch and Photo

1:30 - 2:10  A. VERSHIK, St. Petersburg University
Random permutations, limit shapes and asymptotic
problems of partition theory

2:10 -2:50 L.H. HARPER, University of California, Riverside
In search of maximum antichains of partitions

2:50 — 3:10 Break

3:10-3:30 W. STADJE, University of Osnabriick, Germany
On sets of integers with prescribed gaps

3:30 - 3:50 E. SCHMUTZ, Drexel University
On random partitions of the integer n

3:50 - 4:10  B. FRISTEDT, University of Minnesota

: Random partitions of large integers

6:00 — 7:00 Cash Bar (Faculty Center)
| 7:00 - 10:00 Conference Dinner




8:15 - 9:00
9:00 - 9:20
9:20 - 9:40
9:40 - 10:00

10:00 - 10:20

10:20 - 10:40
10:40 - 11:20

11:20 - 12:00

12:00 - 1:30

1:30 - 2:10

2:10 - 2:50

2:50 - 3:10

3:10 - 3:30

3:30 - 3:50
3:50 — 4:10

4:10 - 4:30

Sunday, January 5

Refreshments

W.J. EWENS, University of Pennsylvania

Sampling properties of random mappings

D.R. GAVELEK, XonTech Inc.

The height of elements in random mappings

J. JAWORSKI, Adam Mickiewicz University, Poland
The evolution of a random mapping

J.C. HANSEN, Northeastern University

Order statistics for random combinatorial structures

Break

0.V. VISKOV, Steklov Mathematical Institute, Moscow
The Rota umbral calculus and the Heisenberg—Weyl algebra
B. PITTEL, Ohio State University

Random permutations and stable matchings

Lunch

R.A. ARRATIA, University of Southern California
Independent process approximations for random combinatorial
structures

L.A. SHEPP, AT&T Bell Laboratories

Linear and non-linear codes for a special channel

Break

P. MATTHEWS, University of Maryland, Baltimore County
A lower bound on the probability of conflict under non-uniform

access in database systems
P. TETALI, DIMACS Center, Rutgers University

- Covering with Latin transversals

Z.-X. HU, University of Illinois

On ([n], P) partitions

A.P. GODBOLE, Michigan Technological University

Some results on Poisson and compound Poisson approximation




8:15 - 9:00

9:00 - 9:40

9:40 - 10:20

10:20 - 10:40

10:40 - 11:20

11:20 - 12:00

12:00 - 12:15
12:15 - 1:30

Monday, January 6

Reireshments

P.J. DONNELLY, Queen Mary and Westfield College, London
Labellings, size-biased permutations and the GEM distribution
V.A. VATUTIN, Steklov Mathematical Institute, Moscow
Branching processes with final types of particles and random trees

Break

A.D. BARBOUR, University of Ziirich, Switzerland
Refined approximations for the Ewens sampling formula
J.W. PITMAN, University of California, Berkeley
Cycles and descents of random permutations

Farewell
Lunch




Ascending subsequences of permutations
and Young tableaux.

H.S. WILF
University of Pennsylvania

It is well known, from Shensted’s algorithm, that there is a relationship
between the longest increasing subsequence in a permutation and the length
of the first row of a Young tableau. We give here a quantitative version.
That is, we give an explicit relationship between the numbers of permuta-
tions of n letters whose longest increasing subsequence is of length & and of
Young tableaux of n cells whose first row has length k. The relationship is
surprisingly simple. A number of unsolved problems are raised.




The early history of the theory of random
' mappings

B. HARRIS
University of Wisconsin, Madison

The paper will review much of the early work in the theory of random
mappings. The contributions of Ulam, Katz, Riordan and the speaker will
be reviewed. The paper will also discuss work by Rubin and Sitgreaves,
Folkert, and Lenard. This work is of particular interest, since it has never
been published.




Cycles in random graphs and hypergraphs
V.F. KOLCHIN
Steklov Mathematical Institute

For a T x n matrix A = ||a;;|| in GF(2) we define a hypergraph G4 with
n vertices and T hyperedges

e = {j:ai; =1}, t=1,...,T.

Denote a¢ = (ag,.--,8tm}, t=1,.... I.

A set of row numbers {t;,...,¢,} is called a critical set if the sum of vec-
tors
ay, + ...+ a,,, is the zero vector.

We can naturally define the concept of independence for critical sets and
determine the maximal number s(A) of independent critical sets in A. The
total number of critical sets S(A) is equal to 2(4) —1. It is not difficult to see
that s(A) and the rank r(A) of the matrix A are connected by the equality

r(A) + s(A) =T.

Therefore we can use the more tractable characteristic s(A) for the investi-
gations of rank of the matrix A.

We consider a matrix A of a specia! form which corresponds to the fol-
lowing system of T random equations in GF(2):

z.-,(g)+...+a:,-,(,)=b,, t=1,...,T,

where %,(t),...,1,(t), t = 1,...,T, are independent identically distributed
random variables which take values 1,...,n with equal probabilities. We
denote by A, ,r the matrix of this system.

In the case r = 2 a critical set of the matrix Ay, corresponds to an
ordinary cycle in the ordinary g.aph G4, r. The behaviour of the number
of cycles in such graphs is well known [1-4]. If n,T — oo in such a way that
2T/n — X, 0 < X < 1, then the distribution of the number of cycles converges
to the Poisson distribution with parameter A = —1In(1 — A). In (3] a new
proof of this assertion is given. The number of cycles in a non-equiprobable
graph is investigated in [5].




In the case r > 2 we introduce a concept of a hypercycle as a set of
hyperedges which corresponds to a critical set of A, , 7. We prove a threshold
property for the raean number of hypercycles in the hypergraph G4, _, ..

Let r > 3 be fixed, T,n — oo in such a way that T/n — a. Then there
exists a constant o, such that MS (A,,7) = 0if a < a,, and MS (A, ,T1) —
o ifa> a,.

The constant a, is the first component of the vector which is the only
solution of the following system of equations in three unknowns a, z, A:

e“”coshA( il )‘l = 1,

ar —zx

- 1/r
i(ar z) = 1,
A T

Atanh )\ = =z.

A numerical analysis of this system gives us the following values of the critical
constants:

a3 =0,8804..., a;=0,9671..., a5=0,9891...,
ag =0,9969..., ar=0,9986..., a5=0,9995....

REFERENCES

1. P. Erdés and A. Rényi, On the evolution of random graphs. Publ.
Math. Inst. Hungaria Acad. Sci. (1960) 5, 17-61.

2. L. Takacs, On the limit distribution of the number of cycles in a random
graph. J. Appl. Probab. (1988) 25A, 359-376.

3. V. F. Kolchin, On the number of cycles in a random graph. Probab.
Problems of Discrete Math. MIEE, Moscow, 1990, pp. 3-8.

4. V. F. Kolchin, On the behaviour of a random graph near a critical
point. Theory Probab. Appl. (1986) 31, 439-451.

5. V. F. Kolchin and V. I. Khokhlov, On the number of cycles in a non-
equiprobable random graph. Diskretnaya Matematika (1990) 2, No. 3,
137-145 (in Russian).




6. G. V. Balakin, V. F. Kolchin and V. I. Khokhlov, Hypercycles in a
random hypergraph. Diskretnaya Matematika (1991) 3, No. 3, 102-108
(in Russian).




Brownian bridge asymptotics for random
mappings

D. Aldous
University of California, Berkeley

Write n = {1,2,...,n}. A function f : n — n may be regarded as a
directed graph with edges ¢ — f(i); note this allows an edge i — i. By
a random mapping F,, we mean a uniform random choice of f from aii n"
functions n — n. There is a large literature on combinatorial analysis of ran-
dom mappings, much due to the Soviet school. Their results up to the early
1980s can be found summarized in Kolchin (3]. Three distinct methods have
classically been used for proving n — oo asymptotics for random mappings.

e Take limits in exact formulas.
o Generating function methods: see e.g. Flajolet and Odlyzko [2].

o Representing certain quantities as i.i.d. random variables conditioned
on their sum: see Kolchin [3].

and more recently Stein’s method has been used to bound the errors in certain
asymptotic approximations.

The purpose of this talk is to present a new method. We show how a
mapping can be coded as a walk (with steps £1) of length 2n. Our main result
is that the random walk coded from the random mapping can be rescaled
to converge as n — oo to reflecting Brownian bridge (rBB). This one result
encompasses many asymptotic results for particular statistics which have
previously been treated separately — loosely, it gives limit distributions for
all “global” functionals of random mappings. Of course, the limit distribution
is given in terms of a corresponding functional of rBB, which requires some
calculation to evaluz‘e explicitly. Fortunately most distributions of interest
have already been discussed in the theoretical stochastic processes literature,
or can be derived by known methods. This program parallels that of Aldous
[1] in which distributions associated with random trees are derived by coding
trees as walks converging to Brownian excursion.




The exact way in which rBB approximates a random mapping is best said
in pictures, but here is one aspect. Let [G;, D,] be the excursion of Brown-
ian bridge. containing a uniform random time. Then we can decompose the
Brownian bridge into three processes defined on [0, Gy, [G1, D4] and [D4,1],
and these three processes are rescaled versions of Brownian bridge, Brownian
excursion and Brownian bridge respectively. If we take a random mapping
and see where vertex 1 is, we can split the graph into three parts:

(a) the tree-component containing 1;

(b) the rest of the graph-component containing 1;

(c) the rest of the graph.

In our coded walk these parts appear in order (b,a,c), and approximate the
tripartite decomposition of rBB described above. This is joint work with Jim
Pitman.

REFERENCES

1. D.J. Aldous. The continuum random tree II: an overview. In M.T.
Barlow and N.H. Bingham, editors, Proc. Durham Symp. Stochastic
Analysis 1990, pp. 23-70, Cambridge University Press, 1991.

2. P. Flajolet and A. Odlyzko. Random mapping statistics. In J.-J.
Quisquater, editor, Proc. Eurocrypt 89, pp. 329-354, Springer-Verlag,
1990. Lecture Notes in C.S. 434.

3. V.F. Kolchin. Random Mappings. Optimization Software, New York,
1986. (Translation of Russian original).




Search for the maximum of a random walk
AM. ODLYZKO
AT&T Bell Laboratories

Let X;,X3,... be independent and identically distributed with P(X; =
1) =P(X; =~1) =1/2, and let Sy = X; + X2 + -+ - + Xi. Thus S; is the
position of a symmetric random walk on the line after k steps. Any algorithm
that determines max{Sy,...,S,} with certainty must examine at least c;n!/?
of the S; on average for a certain constant ¢; > 0, if all random walks with
n steps are considered likely. There is also an algorithm that on average
examines only c;n/? of the Si to determine their maximum for another
constant c;. These results can be used to model some search problems on
functions that are difficult to compute.




The height of a random partial order:
concentration of measure

B. BOLLOBAS
University of Cambridge, England

The problem of determining the length L, of the longest increasing subse-
quence in a random permutation of {1,...,n} is equivalent to that of finding
the height of a random 2-dimensional partial order (obtained by intersecting
two random linear orders). The expectation of L, is known to be about 2/n.
Frieze investigated the concentration of L, about this mean, showing that,
for a > %, there is some constant # > 0 such that

P(| L, — EL, |> n®) < exp(—n”). (1)

In the talk we shall present some recent results obtained jointly with Graham
Brightwell. It will be shown that (1) holds for all & > 1 as well, and analogous
results are true for random k—dimensional orders, for each fixed k > 2.




Comparison techniques for card shuffling
P. DIACONIS

Harvard University

A new set of techniques has emerged to allow us to give useful answers to
the following problem: given a set of permutations, create a random walk by
repeatedly picking from this set (with replacement) and multiplying. How
many steps does it take to get random? The method uses comparison tech-
niques for Dirichlet forms. The basis for comparison is a well studied random
walk where all the eigenvalues are known. The method seems to give sharp
answers for almost any symmetric set of generators. In particular, it gives
sharp results for the exclusion process. This is joint work with Laurent

Salloff-Coste.
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Long common subsequence problems
J.M. STEELE

University of Pennsyivania

If X; and Y; are independent random variables with values in the same al-
phabet, the variable L, that we investigate is defined as the maximal m such
that there are subsequences %;,1s,...,%y, and j;,72,--.,Jm of {1,2,...,n}
such that X;, = Yj, for all 1 < k < m. This talk briefly reviews recent
progress on the tightness of concentration and other properties of this vari-
able.

11




On menage problems
L. HOLST
Royal Institute of Technology, Stockholm

Consider n couples seated at circular tables with men and women taking
alternating seats but otherwise completely random seating. Let W be the
number of couples sitting next to each other. What can be said about W?
That will be discussed especially when n is large.

12




Poisson limit laws for dependent random
permutations

P.J. JOYCE
University of Idaho

The process of cycle counts (Cy,C,...,Cy,0,0,...) for a random permu-
tation II of length n distributed according to the Ewens sampling formula
converges to a Poisson process with independent coordinates. This result
is extended to a vector of random permutations Il = (II;,...,II;) in the
following way. Let Y = (Y;,...,Y4) be an integer valued random vector
with 4, ¥; = n. Conditional on Y, II; is a permutation of length Y; dis-
tributed according to a Ewens sampling formula. For ¢ = 1,...,d define
C:; = (Ca,...,Cin,0,...), where C;; is the number of cycles of size j in
permutation II;. It can be shown that for a wide class of distributions for
Y, the C; converge to independent Poisson processes. Total variation tech-
niques are used to establish the result. The work is motivated by a problem
in population genetics. This is joint work with Simon Tavaré.

13




On the structure of a non-uniformly
distributed random graph

V.I. KHOKHLOV
Steklov Mathematical Institute, Moscow

We consider a random graph Gy with N labelled vertices and T edges.
These T edges are obtained by T independent trials. In each trial the edge
between vertices ¢ and j occurs with the probability 2p;p;, and the loop at
the vertex ¢ occurs with the probability p?; ¢,7 = 1,...,n, p1,...,pn 2> 0,
nt...+ppa=1.

Let N — o0, 2T/N — A, p; = a;/N, a; = ai(N), i = 1,2,...,N, and
there exists a limit

and positive constants € and E such that e < a; < E,:1=1,2,...,n. Then,
under the additional condition Aa? < 1, the graph Gy, with probability
approaching one, does not contain components with more than one cycle
and tree- components that have more than clog N vertices, where c is a
constant. Moreover, under these conditions the distribution of the number

of cycles in the graph converges to the Poisson distribution with parameter
A =-31In(1 - Aa?).

REFERENCES

1. V. F. Kolchin and V. 1. Khokhlov, On the number of cycles in a non-
equiprobable random graph. Diskretnaya Matematika (1990) 2, No. 3,
137-145 (in Russian).

2. V. 1. Khokhlov and V. F. Kolchin, On the structure of a random graph
with nonuniform distribution. In: New Trends in Probab. and Statist.,
pp. 445-456, VSP/Mokslas, 1991.
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The Poisson paradigm and random graphs
J. SPENCER

New York University

When a random variable X is the sum of many indicator random vari-

ables, each rare and mostly independent, the Poisson Paradigm is that X has
close to the Poisson distribution. In particular - if E[X] = p the Pr[X = 0]
should be close to e~#. This is a natural situation in Random Graphs. For
example, in the original papers of Erdés and Rényi on Random Graphs it
was shown that in G(n,p) if p = p(n) is such that the expected number of
triangles is a constant u then indeed the probability that there is no triangle
approaches e™#,

A few years ago Svante Janson, employing a variant of the Stein-Chen
method, found a pair of inequalities now known as the Janson inequalities.
With these results such as the above come out with a fairly elementary cal-
culation on Random Graphs, involving no more, basically, than evaluation
of the second moment. Applications include the following.
¢ Bounds on the probability that G ~ G(n,p) contains no subgraph H - for
a fixed H and various p = p(n).
¢ Fine threshold behavior for every vertex to lie in a triangle, and similar
extension statements.

o The existence of sets S of positive integers so that the number of represen-
tations n =z +y + z with 2,5,z € S is O(Inn).

15




On the heights and widths of random rooted
trees

L. TAKACS

Case Western Reserve University

We shall consider rooted trees with vertices 1,2,...,n. The root is labeled
1. Each tree is represented by an ordered sequence of n nonegative integers

(31, %2, . . . ,in) satisfying the conditions
iyt it tin=n—1, (1)
and
t1+ia4--+t,2rforl1<r<n. (2)

Denote by S, the set of all distinct trees defined above. In a tree, repre-
sented by (i1,12,...,1s), two vertices r and s (1 < r < s < n) are joined by
an edge if and only if

ottt <s<io+u+---+1, (3)
where 79 = 1. The number of trees in S, is
1{2n-2
|Sn|—Cn—l—;(n_1)1 (4)

where Co = C, =1,C; =2,C3 =5,C4 = 14,... are the Catalan numbers.
Let {p;} be a probability distribution on the set of nonnegative integers
with expectation 1 and standard deviation o (0 < o < 00). Let us choose a
tree at random in S,, assuming that the probability of a tree represented by
(315825 -+ ,1n) i8
p(i1,12,...,%n) = AnPirPi; - - - Pin (5)
where A, is determined by the requirement

Ep(il,ig,...,in) = 1. (6)
Sn

For a tree chosen at random in S, define the random variable 7,(m) as
the number of vertices at distiance m from the root. Furthermore, define

pn = max{m : 7,(m) > 0} (7

16




as the height of the tree,
6, = max{r,(m) : m > 0} (8)
as the width of the tree and
Ta =3 ma(m) (9)

m2>0
as the total height of the tree.
Our aim is to find the asymtotic distributions of 7,, gn,6n and 7,(m) if
n — co and m = [2a,/n/o] where 0 < o < oo.
We shall prove the following theorems:
Theorem 1 We have

lim P {% < z} = W(z) (10)

for z > 0 where W(z) is the distribution function of a positive random vari- -
able and is given by

W(z) = {?_ > e"’*u:IaU(I/G, 4/3, v} (11)
k=1

for z > 0. The function U(a,bd,z) is the confluent hypergeometric function,
vy = 2a3/(272%), (12)

and z = —ai(k = 1,2,...) are the zeros of the Airy function Ai(z) arranged
sothat0<a; <a;<...<ap<....
Theorem 2 If0 < a < oo, then

ul_.llléop {271;([20\/_710]) 5 .'L'} = G.,(z) (13)

av/n

’

for z > 0 where G,(z) is the distribution function of a nonnegative random
variable and is given by

Gue)=1-25 5 (j i 1) e (430 g B oz + 205) /R (14)

j=1 k=0

17




for z > 0 where Ho(z), Hy(z),... are the Hermite polynomials defined by
(n/2] ( —1)izn-%
Bn(=) =12, 5iiitm — )1 (19)

3=0

Furthermore, we have

nﬁ_{x.}oP{25%<z}_"le§°P{ f/_gx}=a,(0) (16)

for z > 0. The first part of this equation is due to V.F. Kolchin (1978), and
the second part was conjectured by D. Aldous (1990).

Let {n*(¢),0 <t <1} be the Brownian excursion process and 7+(a) its
local time at level @ > 0. Let

= /o "at(b)dt. (17)

The aforementioned results for random trees imply that

P{r*(a) < z} = Ga(z) (18)
for « > 0 and z > 0 and
P{rt <z} =W(2) (19)
for £ > 0. It is already known that
P {osg:gl 7+(t) < z} =P {rgggc *(a) < 2.1:} = G.(0) (20)

for z > 0. [D.P. Kennedy (1976) and T. Jeulin (1985).]

18




Random permutations, limit shapes and
asymptotic problems of partition theory

A. VERSHIK

St. Petersburg University

Asymptotic properties of the limit measures which appear in additive
problems in partition theory, and number theory can be considered in some
geometric manner. There are the different type of asymptotic behaviour:
‘ergodic’ in which we can put the problems like LLN and CLT and ‘noner-
godic’ in which one can calculate the limit distribution and the boundary. All
kind of these examples appear in the context of random permutations and
statistics on the partitions on integers or reals. It happens that completely
different problems can give us the same limit measures.

19




In search of maximum antichains of
partitions

L.H. HARPER
University of California, Riverside

An antichain in a poset P is a subset of P having no comparable members.
In 1928 Sperner showed that the largest antichain in the set of all subsets of
an n-set ordered by containment, is its largest rank.

Around 1967 Rota asked if the partitions of an n-set, ordered by refine-
ment, has the Sperner property, i.e. is the largest antichain the largest rank?
Erdés has asked the same question about the partitions of n.

In 1978 Canfield showed that the answer to Rota’s question is ‘no’; that
for n sufficiently large (n > 6 x 10?*) antichains larger than any rank exist.
Subsequent papers by Shearer and Kleitman lowered the upper bound on
the Canfield number to 6 x 10%, but did not give any lower bounds on it nor
ascertain whether there were antichains significantly larger than the largest
rank.

In 1985 the present author

i) Showed how to approximate the poset of partitions of an n-set by a
Gaussian process ordered by a cone.

ii) Solved the finite dimensional analog of the Sperner problem in i);

iii) Carried out calculations, based on the assumption that the solution of
the Sperner problem is preserved by the limiting process of i), which
show that the Canfield number is about 6 x 106 and that the ratio of
the largest antichain to the largest rank converges to 1.69.

Recently J. Chavez and I have been investigating whether the same tech-
nique can answer Erdés’s question. Qur latest results will be presented.
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On sets of integers with prescribed gaps
W. STADJE

University of Osnabriick, Germany

For a fixed set I of positive integers we consider the set of paths (pq, ..., px)
of arbitrary length satisfying py —pi-1 € I for [ =2,...,k and po = 1,px = n.
Equipping it with the uniform distribution, the random path length T, is
studied. Asymptotic expansions of the moments of T, are derived and its
asymptotic normality is proved. The step lengths p; — p;_; are seen to follow
asymptotically a restricted geometrical distribution. Analogous results are
given for the free boundary case in which the values of p, and p; are not
specified. In the special case I = {m + 1,m + 2,...} (for some fixed m € N)
we derive the exact distribution of a random ‘m-gap’ subset of {1,...,n} and
exhibit some connections to the theory of representations of natural numbers.
A simple mechanism for generating a random m-gap subset is also presented.
This is joint work with Y. Baryshnikov.
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On random partitions of the integer n
E. SCHMUTZ

Drexel University

Put a uniform probability distribution on the set of partitions of the
integer n into parts that are elements of a certain set A. If Ay, Ay,...,As
are disjoint sets whose union is A, let F;(1) denote the number of part sizes
that the partitioa A has in A;. Under suitable conditions, the random vector
P=(P,P,,...,P,;) is asymptotically normally distributed.
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Random partitibns of large integers
B. FRISTEDT

University of Minnesota

Random partitions of integers will be discussed for the case where all
partitions of an integer n are equally likely. The focus is on limit theorems
as n — oo. In particular, as n — oo, the decreasing sequence of large parts,
beginuning with the largest part, then the next largest part, etc. approaches,
when appropriately normalized, a certain Markov chain which can be explic-
itly identified. The major tool is a simple construction of random partitions
that treats the number being partitioned as a random variable in such a way
that the numbers of parts of various sizes are independent random variables.
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Sampling properties of random mappings
W.J. EWENS

University of Pennsylvania

Three aspects of ‘sampling’ in a random mapping from (1,2,...,m) to
(1,2,...,m) will be considered. In the first of these, we consider the com-
ponents of (1,2,...,n) induced by the components of the mapping. We
find that often parameters do uot converge from the sample to the original
mapping: this is due to our inability to use weak convergence theory. The
second concerns the relation between samples from a random mapping and
a random permutation: as m increases without limit, the two distributions
become identical, apart from the value of a certain parameter. The third
concerns size-biased sampling: the components of the mapping are listed by
a size-biased procedure. The limiting distribution of the normalized compo-
nent sizes converges to a distribution with many remarkable properties. The
distributions described above arise often in population genetics theory, and
their interpretation in that field will be discussed.
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The height of elements in random mappings
D.R. GAVELEK
XonTech Inc.

Interest in the properties of random mappings - arbitrarily selected from
the set of NV functions that map a set of N distinct elements into itself -
was stimulated almost forty years ago by Metropolis and Ulam. Over the
intervening years random mapping models have been used in applications
ranging from random number generation and cryptography to the simula-
tion of epidemic processes and tests of the intrinsic randomness of quantum
mechanics. Discussed in this paper are approximately twenty characteristics
related to the height distributions of elements in the functional graphs or de
Bruijn diagrams representing a random map. Some of these distributions are
well known. Other results, such as the expected number of ancestors of an
element of height H, and the average height of an orphan point, appear to be
new. As an additional unifying factor it is shown that all of these parameters
are naturally expressed in terms of the incomplete gamma function.
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The evolution of a random mapping
J. JAWCRSKI
Adam Mickiewicz University, Poland

A random mapping (T,; q) of a finite set V = {1,...,n} into itself assigns
independently to each i € V its unique image j = T'(i) € V with probabil-
ity ¢ for ¢ = j and with probability P = (1 — q)/(n — 1) for ¢t # j. We
study the evolution of a random digraph Gr,{q), representing (T; q), as its
arc-occurrence probability P = P(n) increases from 0 to 1/(r — 1). The
structure of functional digraphs enables asymptotic studies of exact discrete
distributions of many characteristics related to G, . For example, we con-
sider the number of predecessors of m given vertices, the quasi-binomially
distributed random variable associated with a particular epidemic process.
Finally, let (T,; M) be a random element of a family of all loopless digraphs
on n vertices with exactly M vertices of outdegree 1 and n — M vertices of
outdegree 0. Clearly, there is an equivalence between (Th;q) and (Tn; M).
Moreover, (Tn; M) can be treated as the Mth stage of the ‘regular’ random
digraph process {Gr,(M )}"M(';;l) We study the appearance of the first cycle
in such a process and the structure of the digraph near the critical point
M=n.
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Order statistics for random combinatorial
structures

J.C. HANSEN

Northeastern University

We consider labeled and unlabeled ‘decomposable’ combinatorial struc-
tures which are characterized by the following generating function equations.
In the labeled case, P(z) = exp C(z) where P(2) is the exponential gener-
ating function for the number of structures of size n and C(z) is the expo-
nential generating function for the number of connected structures of size
n. In the unlabeled case, P(z) = exp(C(z) + C(2?)/2 + ...) where P(z)
is the ordinary generating function for the number of structures of size n
and C(z) is the ordinary generating function for the number of ‘connected’
structures of size n. In both cases, we are interested in the measure induced
V={{=z}:21 222 2 .. 20,L2z; <1} by the (decreasing) sequence
of order statistics for the component sizes of a random structure of size n
(normalized by n). We show that if the generating functions C(z), in the
labeled case, and C(z), in the unlabeled case, are logarithmic functions then
the induced measures on V converge in distribution to a Poisson-Dirichlet
distribution on V. In the labeled case, this result unifies results known for
particular examples such as random permutations and random mappings. In
the unlabeled case, this gives new distributional results for examples such as
factorization of polynomials over GF(q).
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The Rota umbral calculus and the
Heisenberg-Weyl algebra

0.V.VISKOV

Steklov Mathematical Institute, Moscow

The talk is based on some of the author’s papers (see 1] and references
therein, [2], [3]).

The Heisenberg-Weyl algebra is the algebra freely generated by three
variables A,B and C subject to the identities

[A,B]=AB-BA, [A,C]=[B,C]=0.

The main purpose of this talk is to emphasize the role played by a suitable
representation of this algebra in contemporary umbral or operator calculus
originated in an inspiring paper of G.-C. Rota [4].

Let p = {pa(z),n =0,1,2,...} be an arbitrary basis in the commutative
algebra P of all polynomials of a single variable z with coefficients in a field of
characteristic zero and let £ be the set of linear maps from P into P. Since
every operator in £ is uniquely determined by its actions on an arbitrary
basis p of P, the relaiions

Alpo(z)] =0, Alpa(z)] = npp-1(z), n=12...;

B[p,,(.‘t)] =pn+l($)’ n=0,1,2,...,
give us the desirable representation of the Heisenberg Weyl algebra if we
take the identity map as C. The simplest particular case of this situation is
pa(z) =2z n=0,1,2,..., and then A = d/dx and the operator B is the
multiplication by z.

Representation (2) and the systematic use of relations (1) allow us to
obtain easily many important formulae in the finite operator calculus [5],
[6] including the recurrence and transfer formulae, umbral operators and
effective tool for the composition and inversion of power series. Moreover,
the proofs become essentially simpler.

The above mentioned approach admits a simple generalization to the
multivariate case. It is also useful for analysis of many other situations, for
instaace, in the Stanley theory of differential posets [7].
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Random permutations and stable matchings
B. G. PITTEL

Ohio State University

A matching on a set of an even number of members is stable - with regard
to a given system of members’ preferences for a partner - if no two unmatched
members prefer each other to their partners under the matching. We study
the set of stable matchings for a random instance of the ranking system, under
an assumption that each member rank orders potential partners uniformly at
random, independently of other members. For the bipartite version (“stable
marriages”) with n men and n women, we prove that almost surely the
total number of stable matchings (marriages) is at least (n/logn)/2. We
show an almost sure (a.s.) existence of an “egalitarian” marriage, for which
the total rank of all spouses is about 2n%/2, as opposed to n?/logn for the
extreme - female optimal and male optimal - marriages. A.s. this particular
matching is also (asymptotically) a “minimum regret” stable marriage, with
the largest rank of a spouse in it being close to n!/?log n. Quite unexpectedly,
the stable matchings obey - statistically - a law of hyperbola. It states that
almost surely the product of the sum of husbands’ ranks and the sum of
of wives’ ranks in a stable marriage is asymptotic to n3, uniformly over all
stable marriages.

We also study a nonbipartite version of the stable matching problem,
which is colloquially known as a “stable roommates” problem. Here, in a set
of even cardinality n, each member ranks all others in order of preference. It
is well known that unlike the bipartite version (marriages), a stable match-
ing may not exist. We prove that, for the random instance of the ranking
system, the mean and variance of the number of stable matchings are asymp-
totic to €'/ and (wn/4e)!/3, respectively. (For the marriages, the mean is
about nlogn/e.) Thus, P(n) the probability that a solution exists is at least
const /n'/?. What is lim P(n)? Rob Irving has performed extensive computer
runs using his two-stage proposal algorithm. (The algorithm delivers a sta-
ble matching whenever there is one.) The empirical data has lead him to an
intriguing conjecture that the limit is positive. We present some preliminary
results concerning the likely behavior of Irving’s algorithm, and a hyperbola
law which holds for stable tables, Irving’s extension - to the nonbipartite
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case- of the notion of stable marriages. We also discuss likely structure of
closely related stable (cyclic) partitions, which have been discovered recently
by Tan.

Finally, we look at the probabilistic aspects of a conceptually (and math-
ematically) related trade model introduced and investigated by Shapley and
Scarf.
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Independent process approximations for
combinatorial structures

R.A. ARRATIA
University of Southern Californiaa

Many random combinatorial objects have a structure whose joint distri-
bution is exactly equal to that of a process of mutually independent random
variables, conditioned on the value of a weighted sum of these independent
random variables. It is interesting to compare the combinatorial structure
directly to the independent process, without conditioning. The quality of
approximation can be conveniently quantified in terms of total variation dis-
tance. Examples include random permutations, random mapping functions
and patterns, random partitions of a set, random partitions of a positive in-
teger, random partitions of an integer into parts of distinct sizes, and random
polynomials over a finite field, in every case with the uniform distribution
over all possibilities of size n.

In more detail, consider the component structure C(n) = (C1(n), C2(n),...
Cn(n)), where C; represents the number of parts of size i. The random
variables C;,C,,...,C, are mutually dependent, since the weighted sum
C14+2C,+---+nC, has the constant value n. For a given family of combina-
torial objects, indexed by n = 1,2,..., and for each value of a real parameter
z > 0, there are mutually independent random variables Z;, Z,, ..., with the
following property. Let T, be the weighted sum T, = Z; + 2Z; + - -- + nZ,.
For each n, the joint distribution of the combinatorial process C(n) is equal
to the joint distribution of (Z,,..., Z,), conditioned on the event {T,, = n}.
The simple, independent process (Z,...,Z,), without conditioning on the
value of T,,, may directly provide useful approximations to the distribution
of C(n).

To describe the independent random variables Z;, let m; be the num-
ber of possible structures available for each ,«rt of size :. For the class of
combinatorial assemblies, which includes permutations, with m; = (i — 1)!,
mapping functions, with m; = (i — 1)!(1 +i +42/2+---+1"1/(i = 1)!), and
partitions of a set, with m; = 1, we have that Z; is Poisson with parameter
A = m;z‘/i!, z > 0. For the class of multisets, which includes partitions of
an integer, with m; = 1, polynomials of degree n, with m; = the number
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of monic irreducible polynomials of degree ¢, and random mapping patterns,
we have that Z; is negative binomial, corresponding to the sum of m; inde-
pendent geometric random varia>les Y with P(Y = k) = (1 — z*)(z*)* for
k > 0,0 < z < 1. For the class of selections, which includes partitions of an
integer into distinct parts, and square free polynomials, we have that Z; is
Binomial with parameters m;,z'/(1 + z*),z > 0.

An appropriate choice of the parameter z corresponds roughly to max-
imizing P(T, = n). In some cases, a constant gives an appropriate choice
of z; examples include £ = 1 for random permutations, z = e~! for ran-
dom mapping functions, z = p = 0.3383... for random mapping patterns,
and z = ¢! for random polynomials over a field with ¢ elements. In
such cases, C(n), viewed as an element of R*®, converges in distribution
to (Z,,Z,,...). In other examples an appropriate choice of £ must vary with
n; examples include z = logn — loglogn for random partitions of the set
{1,2,---,n}, £ = exp(—=x/+/6n) for random partitions of the integer n and
z = exp(—/v/12n) for partitions with no repeated parts.

For most examples, with an appropriate choice of z, for large n and in-
dividually for each i = 1 to n, Z; is a good approximation for C;(n). More
generally, for B C {1,...,n}, the joint distribution of the independent pro-
cess (Z;)ieB is a good approximation for the joint distribution of the process
(Ci)iep, provided that B is small in the sense that the contributions to the
mean and variance of T,, from terms indexed by B are small compared to the
mean and variance of T,,. This approximation can be quantified conveniently
by the total variation metric, and allows effective approximation of the dis-
tribution of some functionals of the entire process C(n) by the distribution of
the same functional applied to the independent process (Z,...,Z,). Clearly,
not all functionals are approximated well in distribution, the extreme exam-
ple being the indicator functional k(ay,...,a,) = 1{a;+2a,+- - -+na, =n},
since in all non-trivial examples Ek(Z,,...,2Z,) = P(T, =n) = 0.

We consider issues common to all the above examples, including equalities
and upper bounds for total variation distances, heuristics for good approx-
imations, the relation to standard generating functions, refinement to the
process which counts the number of parts of each possible type, the effect of
conditioning on further restrictions, large deviation theory and nonuniform
measures on combinatorial objects, and the possibility of getting useful upper
bounds for the probability of unlikely events by simply giving a lower bound
on P(T, = n). Detailed examples, which show the utility and tractability of
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these approximations of combinatorial processes by independent processes,
appear in separate papers. This is joint work with Simon Tavaré.
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Linear and non-linear codes for a special
channel

L.A. SHEPP
AT&T Bell Laboratories

Janos Korner et al want to construct a subset, S, of the group G, =
{0,1,-1}" with componentwise addition modulo 3, with as many elements
as possible and with the property that any two code words (elements of S)
z,y are far apart in the sense that some component of the difference, is 1 ie
z(i) — y(¢) = 1 for some i. (It follows that some other component of z — y is
-1, by interchanging the roles of z and y.)

Let A(n) be the cardinality of any set S attaining maximum cardinality
with the property. It is easy to see that A(m + n) > A(m) A(n) and so
A(n) = a™ for n — oo for some a, where 2 < @ < 3. The lower bound comes
from the example, due to the proposers, of the set

S = {z : £ has n/2 1's and the rest 0's}.

If S is also required to be a subgroup of G,,, then the maximum cardinality
will be a number, B(n), and again B(n) ~ b as n — oo for some b, where
V3 < b < a. The lower bound comes from the example

S = {a(1,-1,0,0,...)+¢(0,0,1,-1,0,0,...)+c5(0,0,0,0,1,—1,0,0,...)+...

of n/2 generators of the subgroup S with n/2 independent coefficients ¢, ¢c3,. . .
in {0,1,-1}.

We prove that these lower bounds are asymptotically best possible (for
A(n), only in the weak sense of &), so that b = v/3, and a = 2. Thus there
are considerably fewer codewords possible if S is required to be a linear, or
group code, which seems to contradict, to some extent, the naive belief that
the more efficient (in the sense of decodability) group codes give up little in
the sense of capacity. This is joint work with Rob Calderbank, Peter Frankl,
Ron Graham, and Wen-Ch’ing Winnie Li.
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A lower bound on the probability of conflict

under non-uniform access in database
- systems

P. MATTHEWS
University of Maryland Baltimore County

We consider an N item database and ¢ transactions, each of which will
independently request a subset of the items. For ¢ = 1,...,¢ transaction
will request n; items according to some probability distribution on the (2"
sets of n; items. We say there are no conflicts if the ¢ chosen sets are a
disjoint. In probabilistic language ¢ complexes of balls are being allocated
independently to N urns, and we are considering the probability that no urn
receives two or more balls. If the transactions choose simple random samples,

then the probability of no conflicts is (nx N 'm) ( te1 (fx)) -l. We give a class
of sampling schemes of practical interest and show that, within this class, the
probability of no conflicts is no larger than that for simple random sampling.
This supports a long-standing conjecture in the database community that
uniform access minimizes the probability of conflicts. This is joint work with

Keith Humenik, A. B. Stephens, and Yelena Yesha.
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Covering with Latin Transversals
P. TETALI
DIMACS center, Rutgers University,

Given an n X n matrix A = [a;}], a transversal of Als a set of elements, one

from each row and one from each column. A transversal is a Latin transversal
if no two elements are the same. There have been more conjectures than
theorems on latin transversals in the literature. Recently, Erdés and Cpencer
showed that there always exists a latin transversal in any n X n matrix in
which no element appears more than s times, for s < (n — 1)/16. Here we
show that, in fact, all the elements of the matrix can be partitioned into latin
transversals, provided n is a power of 2 and no element appears more than
en times for some fixed € > 0.
TheoremLet n be 2™. Any n X n matriz in which no element appears more
than s times contains n disjoint latin transversals provided s < en (for e,
an absolute constant < 1). The assumption that n is a power of 2 can
be weakened, but at the moment we are unable to prove the theorem for all
values of n. On the other hand, our proof can be easily modified to prove
the existence of many pairwise disjoint transversals in any n by n matrix
in which no entry appears more than en times, without any restriction on
n. Therefore our method implies a strengthening of the result of Erdés and
Spencer for any n, (apart from the actual value of the constant ¢). The proof
of Theorem 1 involves random partitioning and Lovdsz local lemma. This is
joint work with N. Alon and J. Spencer.
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On ([n], P)-Partitions
Z.-X. HU
University of Illinois

In general, for a set X, probably two of the most interesting structures X
has are order relations and equivalent classes. We introduce the concept of
([n), P)-partitions which is the combination of the above two structures (It is
inspired by Richard P. Stanley’s interesting (P, w)-partitions), where P is a
poset and [r] = {1,2,...,n}. Many mathematical models can be considered
as special cases of ([n], P)-partitions. One interesting application of ([n], P)-
partitions is the special way of realizing a finite poset P by the complete
graph K, on [n]. A new parameter n(P) (called the norm of P) is naturally
derived. n(P) gives an indication of the complexity of P by reflecting both
|P| and order relations in P. We will introduce some new results about
([n], P)-partitions and n(P).
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Some results on Poisson and compound
Poisson approximation

A.P. GODBOLE
Michigan Technological University

The probability density function for the number of overlapping (or non-
overlapping) occurrences of a word pattern can be expressed in terms of
multinomial coefficients summed over an index set determined by an integer
partition. We will present Poisson and compound Poisson approximations
for such random variables, given i.i.d. or stationary Markov letter genera-
tion. The techniques employed include univariate and process versions of
the Stein-Chen method (due to Arratia, Goldstein, Gordon, Barbour, Holst
and Janson) and eigenvalue bounds on convergence to stationarity for a non-
reversible Markov chain (due to Diaconis, Stroock and Fill). Different com-
pound Poisson approximations will be provided for the number of matches
(within a finite memory window of size k) while sampling with replacement,
and for a non-i.i.d. urn problem related to the determination of the number

X of winners of a lottery jackpot.
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Labellings, size-biased permutations and the
GEM distribution

F.J. DONNELLY
Queen Mary and Westfield College, London

In proving limit theorems for the ‘sizes’ of ‘components’ of combinatorial
objects there are usually several ways of labelling the components. One la-
belling is by decreasing size order, another is a particular random labelling
called a size-biased permutation. Continuity results usually guarantee that
convergence with one labelling is equivalent to convergence with the other.
In many cases (random permutations, random mappings, population genet-
ics, prime divisors) normalised sizes converge to the Poisson-Dirichlet dis-
tribution with the ordered labelling and to the GEM distribution with the
size biased labelling. Apart from its inherent interest and natural inter-
pretation in some settings, use of the size-biased permutation often greatly
facilitates the proof of convergence results. Furthermore, in stark contrast
to the Poisson-Dirichlet, the GEM distribution which arises in the limit is
extremely tractable. We also discuss consistency properties of the two dis-
tributions, and of samples from them.
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Branching processes with final types of
particles and random trees

V.A. VATUTIN

Steklov Mathematical Insfitute, Moscow

A natural analogy between some properties of branching processes and
random trees firstly noted (in non-explicit form) by Otter [1] was rediscov-
ered and widely used many times (see, for example, [2-5]). My intention
to look at this analogy once more was stimulated by the last two of these
papers. Kolchin’s work [4], in which the analogy mentioned above obtained a
rigorous mathematical description, considers the problem of finding the limit
distribution, as N — oo, of the height of a tree chosen at random from the
set of all rooted labelled trees having N vertices and edges of unit length.
Article [5] investigates the same problem for a tree constructed in a slightly
more complicated way: firstly one chooses at random a tree from the set
of all binary trees having N vertices of degree 1 and, secondly, independent
exponentially distributed random lengths are assigned to the edges of the
tree. The methods used in these papers to find desired limit distributions
are quite different. Although each of these methods rests upon a correspon-
dence between the trees in question and some Markov branching processes,
the first of them uses essentially some local limit theorems while the second
one employs the moments method.

It appears that some modification of Kolchin’s method can be used to
prove not only the results from [5] but also more general statements. The
key idea is to use a Bellman-Harris branching process with two types of
particles one of which is final.

The process in question is described as follows. It is initiated at time
t = 0 by the birth of one particle of non-final type which lives for a random
time | with the distribution function G(t) = P{l < t} and at the end of its
life produces a random number ¢ of non-fical particl., with the generating
function f(s) = Es‘ and, besides this, one particle of final type if £ € A
where A is some fixed subset of non-negative integers. The final particle (if
any) does not change after its birth moment while the newborn particles of
non-final type evolve independently and stochastically the same as the initial
one: each of them lives for a random time and at the end of its life produces
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particles of final and non-final types, and so on.

Let z(t) be the number of non-final narticles in the process at time ¢,
r =inf{t > 0: 2(t) = 0} and let v5 be the total number of particles of final
type which were born in the process up to the moment 7.

THEOREM. Let p = ): P{¢ = k} > 0, and the G.C.D. of those k € A
for which P{{ =k} >0 be 1 IfEE=1,0< f"(1) = B < o0 and

1-Gt) =o(t™), t— oo,

B
hmp{ez‘/;s”

From the theorem, letting f(s) = e*~!,G(t) = 0ift < 1,G(t) =1ift > 1,
A = {0,1,2,...} and p = 1 we obtain, using the correspondence established
in [4], Kolchin’s theorem concerning the height of a random labelled rooted
tree [4]; letting f(s) = 1 + 3s%, G(t) =1 — €M if t > 0, G(t) = 0 otherwise,
and A :- {0}, p = 1/2, we can arrive after some additional arguments to the
result due to Gupta et al. [5], and finally, letting f(s) = (2—3)"1, G(t) =0
ift<1,Gt)=1ift>1, A= {0,1,2,...}, p=1 we can obtain the limit
distribution of the height of a planted plane tree chosen at random from the
set of all planted plane trees having N vertices firstly given in [6].

Some other problems closely connected with that described above will be
considered also.

then

va =N} = 1+2Z(1 — pkiz 2)e"”‘”’2/2
k=1
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Refined approximations for the Ewens
sampling formula

A.D. BARBOUR
University of Zirich, Switzerland

The Ewens sampling formula is a family of probability distributions over
the space of cycle types of permutations of n objects, indexed by a real pa-
rameter 6. In the case § = 1, where the distribution reduces to that induced
by the uniform distribution on all permutations, the joint distribution of the
number of cycles of lengths less than b = o(n) is extremely well approximated
by a product of Poisson distributions, having mean 1/;j for cycle length j:.
the error is super-exponentially small with nb~!. For @ # 1, the analogous
approximation, with means adjusted to 8/j, is good, but with error only
linear in n='b. In this paper, it is shown that, by choosing the means of
the Poisson distributions more carefully, an error quadratic in n~'b can be
achieved, and that essentially nothing better is possible.
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Cycles and descents of random permutations
J. W. PITMAN

University of California, Berkeley

Formulae for the joint distribution of the cycle structure and number
of descents of a random permutation are derived from simpler formulae for
the distribution of the cycle structure of certain random riffle shuffles wit'. at
most a—1 descents. The results for the cycle structure of riffle shuffles assume
a product form parallel to classical results for uniform random permutations,
and involve the number of aperiodic circular words of a letters (or necklaces
of a colors) of length n. This is joint work with Persi Diaconis and Michael
McGrath.
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